Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
1.
J Diabetes Investig ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470018

RESUMO

Elucidating the molecular mechanism of autophagy was a landmark in understanding not only the physiology of cells and tissues, but also the pathogenesis of diverse diseases, including diabetes and metabolic disorders. Autophagy of pancreatic ß-cells plays a pivotal role in the maintenance of the mass, structure and function of ß-cells, whose dysregulation can lead to abnormal metabolic profiles or diabetes. Modulators of autophagy are being developed to improve metabolic profile and ß-cell function through the removal of harmful materials and rejuvenation of organelles, such as mitochondria and endoplasmic reticulum. Among the known antidiabetic drugs, glucagon-like peptide-1 receptor agonists enhance the autophagic activity of ß-cells, which might contribute to the profound effects of glucagon-like peptide-1 receptor agonists on systemic metabolism. In this review, the results from studies on the role of autophagy in ß-cells and their implication in the development of diabetes are discussed. In addition to non-selective (macro)autophagy, the role and mechanisms of selective autophagy and other minor forms of autophagy that might occur in ß-cells are discussed. As ß-cell failure is the ultimate cause of diabetes and unresponsiveness to conventional therapy, modulation of ß-cell autophagy might represent a future antidiabetic treatment approach, particularly in patients who are not well managed with current antidiabetic therapy.

2.
Autophagy ; 20(3): 659-674, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38290972

RESUMO

Triple-negative breast cancer (TNBC) is associated with a poor prognosis and metastatic growth. TNBC cells frequently undergo macroautophagy/autophagy, contributing to tumor progression and chemotherapeutic resistance. ANXA2 (annexin A2), a potential therapeutic target for TNBC, has been reported to stimulate autophagy. In this study, we investigated the role of ANXA2 in autophagic processes in TNBC cells. TNBC patients exhibited high levels of ANXA2, which correlated with poor outcomes. ANXA2 increased LC3B-II levels following bafilomycin A1 treatment and enhanced autophagic flux in TNBC cells. Notably, ANXA2 upregulated the phosphorylation of HSF1 (heat shock transcription factor 1), resulting in the transcriptional activation of ATG7 (autophagy related 7). The mechanistic target of rapamycin kinase complex 2 (MTORC2) played an important role in ANXA2-mediated ATG7 transcription by HSF1. MTORC2 did not affect the mRNA level of ANXA2, but it was involved in the protein stability of ANXA2. HSPA (heat shock protein family A (Hsp70)) was a potential interacting protein with ANXA2, which may protect ANXA2 from lysosomal proteolysis. ANXA2 knockdown significantly increased sensitivity to doxorubicin, the first-line chemotherapeutic regimen for TNBC treatment, suggesting that the inhibition of autophagy by ANXA2 knockdown may overcome doxorubicin resistance. In a TNBC xenograft mouse model, we demonstrated that ANXA2 knockdown combined with doxorubicin administration significantly inhibited tumor growth compared to doxorubicin treatment alone, offering a promising avenue to enhance the effectiveness of chemotherapy. In summary, our study elucidated the molecular mechanism by which ANXA2 modulates autophagy, suggesting a potential therapeutic approach for TNBC treatment.Abbreviation: ATG: autophagy related; ChIP: chromatin-immunoprecipitation; HBSS: Hanks' balanced salt solution; HSF1: heat shock transcription factor 1; MTOR: mechanistic target of rapamycin kinase; TNBC: triple-negative breast cancer; TFEB: transcription factor EB; TFE3: transcription factor binding to IGHM enhancer 3.


Assuntos
Anexina A2 , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Autofagia/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Fatores de Transcrição de Choque Térmico/genética , Anexina A2/genética , Linhagem Celular Tumoral , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Doxorrubicina , Sirolimo
3.
Exp Mol Med ; 55(9): 1922-1932, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37653033

RESUMO

Mitophagy is an excellent example of selective autophagy that eliminates damaged or dysfunctional mitochondria, and it is crucial for the maintenance of mitochondrial integrity and function. The critical roles of autophagy in pancreatic ß-cell structure and function have been clearly shown. Furthermore, morphological abnormalities and decreased function of mitochondria have been observed in autophagy-deficient ß-cells, suggesting the importance of ß-cell mitophagy. However, the role of authentic mitophagy in ß-cell function has not been clearly demonstrated, as mice with pancreatic ß-cell-specific disruption of Parkin, one of the most important players in mitophagy, did not exhibit apparent abnormalities in ß-cell function or glucose homeostasis. Instead, the role of mitophagy in pancreatic ß-cells has been investigated using ß-cell-specific Tfeb-knockout mice (TfebΔß-cell mice); Tfeb is a master regulator of lysosomal biogenesis or autophagy gene expression and participates in mitophagy. TfebΔß-cell mice were unable to adaptively increase mitophagy or mitochondrial complex activity in response to high-fat diet (HFD)-induced metabolic stress. Consequently, TfebΔß-cell mice exhibited impaired ß-cell responses and further exacerbated metabolic deterioration after HFD feeding. TFEB was activated by mitochondrial or metabolic stress-induced lysosomal Ca2+ release, which led to calcineurin activation and mitophagy. After lysosomal Ca2+ release, depleted lysosomal Ca2+ stores were replenished by ER Ca2+ through ER→lysosomal Ca2+ refilling, which supplemented the low lysosomal Ca2+ capacity. The importance of mitophagy in ß-cell function was also demonstrated in mice that developed ß-cell dysfunction and glucose intolerance after treatment with a calcineurin inhibitor that hampered TFEB activation and mitophagy.


Assuntos
Autofagia , Mitofagia , Camundongos , Animais , Mitofagia/fisiologia , Autofagia/genética , Mitocôndrias/metabolismo , Lisossomos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Camundongos Knockout
4.
Cell Death Discov ; 9(1): 100, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944629

RESUMO

While the mechanism of lipotoxicity by palmitic acid (PA), an effector of metabolic stress in vitro and in vivo, has been extensively investigated, molecular details of lipotoxicity are still not fully characterized. Since recent studies reported that PA can exert lysosomal stress in addition to well-known ER and mitochondrial stress, we studied the role of lysosomal events in lipotoxicity by PA, focusing on lysosomal Ca2+. We found that PA induced accumulation of mitochondrial ROS and that mitochondrial ROS induced release of lysosomal Ca2+ due to lysosomal Ca2+ exit channel activation. Lysosomal Ca2+ release led to increased cytosolic Ca2+ which induced mitochondrial permeability transition (mPT). Chelation of cytoplasmic Ca2+ or blockade of mPT with olesoxime or decylubiquinone (DUB) suppressed lipotoxicity. Lysosomal Ca2+ release led to reduced lysosomal Ca2+ content which was replenished by ER Ca2+, the largest intracellular Ca2+ reservoir (ER → lysosome Ca2+ refilling), which in turn activated store-operated Ca2+ entry (SOCE). Inhibition of ER → lysosome Ca2+ refilling by blockade of ER Ca2+ exit channel using dantrolene or inhibition of SOCE using BTP2 inhibited lipotoxicity in vitro. Dantrolene or DUB also inhibited lipotoxic death of hepatocytes in vivo induced by administration of ethyl palmitate together with LPS. These results suggest a novel pathway of lipotoxicity characterized by mPT due to lysosomal Ca2+ release which was supplemented by ER → lysosome Ca2+ refilling and subsequent SOCE, and also suggest the potential role of modulation of ER → lysosome Ca2+ refilling by dantrolene or other blockers of ER Ca2+ exit channels in disease conditions characterized by lipotoxicity such as metabolic syndrome, diabetes, cardiomyopathy or nonalcoholic steatohepatitis.

5.
Autophagy ; 19(7): 2111-2142, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36719671

RESUMO

There are diverse links between macroautophagy/autophagy pathways and unfolded protein response (UPR) pathways under endoplasmic reticulum (ER) stress conditions to restore ER homeostasis. Phosphorylation of EIF2S1/eIF2α is an important mechanism that can regulate all three UPR pathways through transcriptional and translational reprogramming to maintain cellular homeostasis and overcome cellular stresses. In this study, to investigate the roles of EIF2S1 phosphorylation in regulation of autophagy during ER stress, we used EIF2S1 phosphorylation-deficient (A/A) cells in which residue 51 was mutated from serine to alanine. A/A cells exhibited defects in several steps of autophagic processes (such as autophagosome and autolysosome formation) that are regulated by the transcriptional activities of the autophagy master transcription factors TFEB and TFE3 under ER stress conditions. EIF2S1 phosphorylation was required for nuclear translocation of TFEB and TFE3 during ER stress. In addition, EIF2AK3/PERK, PPP3/calcineurin-mediated dephosphorylation of TFEB and TFE3, and YWHA/14-3-3 dissociation were required for their nuclear translocation, but were insufficient to induce their nuclear retention during ER stress. Overexpression of the activated ATF6/ATF6α form, XBP1s, and ATF4 differentially rescued defects of TFEB and TFE3 nuclear translocation in A/A cells during ER stress. Consequently, overexpression of the activated ATF6 or TFEB form more efficiently rescued autophagic defects, although XBP1s and ATF4 also displayed an ability to restore autophagy in A/A cells during ER stress. Our results suggest that EIF2S1 phosphorylation is important for autophagy and UPR pathways, to restore ER homeostasis and reveal how EIF2S1 phosphorylation connects UPR pathways to autophagy.Abbreviations: A/A: EIF2S1 phosphorylation-deficient; ACTB: actin beta; Ad-: adenovirus-; ATF6: activating transcription factor 6; ATZ: SERPINA1/α1-antitrypsin with an E342K (Z) mutation; Baf A1: bafilomycin A1; BSA: bovine serum albumin; CDK4: cyclin dependent kinase 4; CDK6: cyclin dependent kinase 6; CHX: cycloheximide; CLEAR: coordinated lysosomal expression and regulation; Co-IP: coimmunoprecipitation; CTSB: cathepsin B; CTSD: cathepsin D; CTSL: cathepsin L; DAPI: 4',6-diamidino-2-phenylindole dihydrochloride; DMEM: Dulbecco's modified Eagle's medium; DMSO: dimethyl sulfoxide; DTT: dithiothreitol; EBSS: Earle's Balanced Salt Solution; EGFP: enhanced green fluorescent protein; EIF2S1/eIF2α: eukaryotic translation initiation factor 2 subunit alpha; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; ERAD: endoplasmic reticulum-associated degradation; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; FBS: fetal bovine serum; gRNA: guide RNA; GSK3B/GSK3ß: glycogen synthase kinase 3 beta; HA: hemagglutinin; Hep: immortalized hepatocyte; IF: immunofluorescence; IRES: internal ribosome entry site; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LMB: leptomycin B; LPS: lipopolysaccharide; MAP1LC3A/B/LC3A/B: microtubule associated protein 1 light chain 3 alpha/beta; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MEFs: mouse embryonic fibroblasts; MFI: mean fluorescence intensity; MTORC1: mechanistic target of rapamycin kinase complex 1; NES: nuclear export signal; NFE2L2/NRF2: NFE2 like bZIP transcription factor 2; OE: overexpression; PBS: phosphate-buffered saline; PLA: proximity ligation assay; PPP3/calcineurin: protein phosphatase 3; PTM: post-translational modification; SDS: sodium dodecyl sulfate; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SEM: standard error of the mean; TEM: transmission electron microscopy; TFE3: transcription factor E3; TFEB: transcription factor EB; TFs: transcription factors; Tg: thapsigargin; Tm: tunicamycin; UPR: unfolded protein response; WB: western blot; WT: wild-type; Xbp1s: spliced Xbp1; XPO1/CRM1: exportin 1.


Assuntos
Endorribonucleases , Proteínas Serina-Treonina Quinases , Animais , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Fosforilação , Endorribonucleases/metabolismo , Fator de Iniciação 2 em Procariotos/metabolismo , Autofagia/genética , Calcineurina/metabolismo , Degradação Associada com o Retículo Endoplasmático , Dodecilsulfato de Sódio/metabolismo , Fibroblastos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Lisossomos/metabolismo
6.
Autophagy ; 19(5): 1444-1458, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36217215

RESUMO

Macroautophagy/autophagy or mitophagy plays crucial roles in the maintenance of pancreatic ß-cell function. PPP3/calcineurin can modulate the activity of TFEB, a master regulator of lysosomal biogenesis and autophagy gene expression, through dephosphorylation. We studied whether PPP3/calcineurin inhibitors can affect the mitophagy of pancreatic ß-cells and pancreatic ß-cell function employing FK506, an immunosuppressive drug against graft rejection. FK506 suppressed rotenone- or oligomycin+antimycin-A-induced mitophagy measured by Mito-Keima localization in acidic lysosomes or RFP-LC3 puncta colocalized with TOMM20 in INS-1 insulinoma cells. FK506 diminished nuclear translocation of TFEB after treatment with rotenone or oligomycin+antimycin A. Forced TFEB nuclear translocation by a constitutively active TFEB mutant transfection restored impaired mitophagy by FK506, suggesting the role of decreased TFEB nuclear translocation in FK506-mediated mitophagy impairment. Probably due to reduced mitophagy, recovery of mitochondrial potential or quenching of mitochondrial ROS after removal of rotenone or oligomycin+antimycin A was delayed by FK506. Mitochondrial oxygen consumption was reduced by FK506, indicating reduced mitochondrial function by FK506. Likely due to mitochondrial dysfunction, insulin release from INS-1 cells was reduced by FK506 in vitro. FK506 treatment also reduced insulin release and impaired glucose tolerance in vivo, which was associated with decreased mitophagy and mitochondrial COX activity in pancreatic islets. FK506-induced mitochondrial dysfunction and glucose intolerance were ameliorated by an autophagy enhancer activating TFEB. These results suggest that diminished mitophagy and consequent mitochondrial dysfunction of pancreatic ß-cells contribute to FK506-induced ß-cell dysfunction or glucose intolerance, and autophagy enhancement could be a therapeutic modality against post-transplantation diabetes mellitus caused by PPP3/calcineurin inhibitors.


Assuntos
Intolerância à Glucose , Insulinas , Humanos , Mitofagia/genética , Autofagia/fisiologia , Inibidores de Calcineurina/metabolismo , Tacrolimo/farmacologia , Tacrolimo/metabolismo , Antimicina A/metabolismo , Intolerância à Glucose/metabolismo , Rotenona , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Lisossomos/metabolismo , Oligomicinas/metabolismo , Insulinas/metabolismo
7.
Front Immunol ; 14: 1307739, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38371945

RESUMO

Background: Since NEK7 is critical for NLRP3 inflammasome activation, NEK7 inhibitors could be employed as therapeutic agents against gout, a representative disease caused by NLRP3 inflammasome. Methods: We designed NEK7 inhibitors based on biochemical kinome profiling of 2,7-substituted thieno[3,2-d]pyrimidine derivatives (SLC3031~3035 and SLC3037). Inflammasome activation was assessed by ELISA of IL-1b and immunoblotting of IL-1b maturation after treatment of bone marrow-derived macrophages with LPS+monosodium urate (MSU). NLPR3 binding to NEK7 and oligomerization were examined using immunoprecipitation and Blue Native gel electrophoresis, respectively. In vivo effect was investigated by studying gross and histopathological changes of food pad tissue of MSU-injected mice, together with assays of maturation of IL-1b and ASC speck in the tissue. Results: SLC3037 inhibited inflammasome by MSU and other inflammasome activators through blockade of NLRP3 binding to NEK7 or oligomerization, and subsequent ASC oligomerization/phosphorylation. SLC3037 significantly reduced foot pad thickness and inflammation by MSU, which was superior to the effects of colchicine. SLC3037 significantly reduced content or maturation of IL-1b and ASC speck in the food pad. The number and height of intestinal villi were decreased by colchicine but not by SLC3037. Conclusion: SLC3037, a NLRP3 inhibitor blocking NEK7 binding to NLRP3, could be a novel agent against diseases associated with NLRP3 inflammasome activation such as gout, cardiovascular diseases, metabolic syndrome or neurodegenerative diseases.


Assuntos
Gota , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ácido Úrico/efeitos adversos , Inflamassomos/metabolismo , Gota/metabolismo , Colchicina/uso terapêutico
8.
Exp Mol Med ; 54(11): 2036-2046, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36434042

RESUMO

The vitamin-C-synthesizing enzyme senescent marker protein 30 (SMP30) is a cold resistance gene in Drosophila, and vitamin C concentration increases in brown adipose tissue post-cold exposure. However, the roles of SMP30 in thermogenesis are unknown. Here, we tested the molecular mechanism of thermogenesis using wild-type (WT) and vitamin C-deficient SMP30-knockout (KO) mice. SMP30-KO mice gained more weight than WT mice without a change in food intake in response to short-term high-fat diet feeding. Indirect calorimetry and cold-challenge experiments indicated that energy expenditure is lower in SMP30-KO mice, which is associated with decreased thermogenesis in adipose tissues. Therefore, SMP30-KO mice do not lose weight during cold exposure, whereas WT mice lose weight markedly. Mechanistically, the levels of serum FGF21 were notably lower in SMP30-KO mice, and vitamin C supplementation in SMP30-KO mice recovered FGF21 expression and thermogenesis, with a marked reduction in body weight during cold exposure. Further experiments revealed that vitamin C activates PPARα to upregulate FGF21. Our findings demonstrate that SMP30-mediated synthesis of vitamin C activates the PPARα/FGF21 axis, contributing to the maintenance of thermogenesis in mice.


Assuntos
Ácido Ascórbico , PPAR alfa , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR alfa/genética , PPAR alfa/metabolismo , Termogênese/genética , Vitaminas/metabolismo
9.
Cell Death Discov ; 8(1): 414, 2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209144

RESUMO

In ferroptosis, the roles of mitochondria have been controversial. To explore the role of mitochondrial events in ferroptosis, we employed mitochondrial DNA-depleted ρ0 cells that are resistant to cell death due to enhanced expression of antioxidant enzymes. Expression of mitochondrial-type GPx4 (mGPx4) but no other forms of GPx4 was increased in SK-Hep1 ρ0 cells. Likely due to high mGPx4 expression, SK-Hep1 ρ0 cells were resistant to ferroptosis by erastin inhibiting xCT channel. In contrast, SK-Hep1 ρ0 cells were susceptible to cell death by a high concentration of RSL3 imposing ferroptosis by GPx4 inhibition. Accumulation of cellular ROS and oxidized lipids was observed in erastin- or RSL3-treated SK-Hep1 ρ+ cells but not in erastin-treated SK-Hep1 ρ0 cells. Mitochondrial ROS and mitochondrial peroxidized lipids accumulated in SK-Hep1 ρ+ cells not only by RSL3 but also by erastin acting on xCT on the plasma membrane. Mitochondrial ROS quenching inhibited SK-Hep1 ρ+ cell death by erastin or a high dose of RSL3, suggesting a critical role of mitochondrial ROS in ferroptosis. Ferroptosis by erastin or RSL3 was inhibited by a more than 20-fold lower concentration of MitoQ, a mitochondrial ROS quencher, compared to DecylQ, a non-targeting counterpart. Ferroptosis of SK-Hep1 ρ+ cells by erastin or RSL3 was markedly inhibited by a VDAC inhibitor, accompanied by significantly reduced accumulation of mitochondria ROS, total peroxidized lipids, and mitochondrial peroxidized lipids, strongly supporting the role of mitochondrial events in ferroptotic death and that of VDAC in mitochondrial steps of ferroptosis induced by erastin or RSL3. SK-Hep1 ρ+ cell ferroptosis by sorafenib was also suppressed by mitochondrial ROS quenchers, accompanied by abrogation of sorafenib-induced mitochondrial ROS and mitochondrial peroxidized lipid accumulation. These results suggest that SK-Hep1 ρ0 cells are resistant to ferroptosis due to upregulation of mGPx4 expression and mitochondrial events could be the ultimate step in determining final cell fate.

11.
J Korean Med Sci ; 37(37): e276, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163475

RESUMO

Autophagy is critically involved in the maintenance of intracellular nutrient homeostasis and organelle function. Dysregulated autophagy is likely to play a role in the development of metabolic disorders and diabetes because autophagy is critical in the rejuvenation of dysfunctional or stressed endoplasmic reticulum and mitochondria that play a crucial role in the development of diabetes. Indeed, systemic autophagy insufficiency led to the increased tissue lipid content, aggravated metabolic and finally more severe diabetes when metabolic stress was imposed, suggesting that autophagy insufficiency of dysfunction of lysosome, an effector organelle of autophagy, due to aging, genetic predisposition or environmental factors could be an underlying cause of diabetes. Conversely, autophagy enhancer could improve metabolic profile of obese mice by reducing tissue lipid content and ameliorating metabolic inflammation. Furthermore, clearance of human islet amyloid polypeptide (hIAPP) oligomer and amyloid that accumulate in pancreatic islets of > 90% of diabetes patients was also dependent on autophagy. Consistently, autophagy enhancer could improve glucose profile and ß-cell function of transgenic mice expressing amyloidogenic hIAPP in pancreatic ß-cells, which was accompanied by reduced accumulation of hIAPP oligomer or amyloid, ameliorated ß-cell apoptosis and increased ß-cell mass. These results suggest that autophagy enhancer could be a novel therapeutic modality against diabetes associated with lipid overload and human diabetes characterized by islet amyloid accumulation.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Mellitus , Células Secretoras de Insulina , Ilhotas Pancreáticas , Síndrome Metabólica , Amiloide/genética , Amiloide/metabolismo , Animais , Autofagia/fisiologia , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/patologia , Diabetes Mellitus Tipo 2/patologia , Glucose/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Lipídeos , Síndrome Metabólica/complicações , Camundongos , Camundongos Transgênicos
12.
Front Endocrinol (Lausanne) ; 13: 966644, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046792

RESUMO

The thyroid gland plays an essential role in the regulation of body energy expenditure to maintain metabolic homeostasis. However, to date, there are no studies investigating the morphological and functional changes of the thyroid gland due to mitochondrial stress in metabolic organs such as the liver. We used data from the Genotype-Tissue Expression portal to investigate RNA expression patterns of the thyroid gland according to the expression of growth differentiation factor 15 (GDF15) such as the muscles and liver. To verify the effect of hepatic GDF15 on the thyroid gland, we compared the morphological findings of the thyroid gland from liver-specific GDF15 transgenic mice to that of wild type mice. High GDF15 expression in the muscles and liver was associated with the upregulation of genes related to hypoxia, inflammation (TGF-α via NFκB), apoptosis, and p53 pathway in thyroid glands. In addition, high hepatic GDF15 was related to epithelial mesenchymal transition and mTORC1 signaling. Electron microscopy for liver-specific GDF15 transgenic mice revealed short mitochondrial cristae length and small mitochondrial area, indicating reduced mitochondrial function. However, serum thyroid stimulating hormone (TSH) level was not significantly different. In our human cohort, those with a high serum GDF15 level showed high fasting glucose, alanine transaminase, and alkaline phosphatase but no difference in TSH, similar to the data from our mice model. Additionally, high serum GDF15 increased the risk of lymph node metastasis to lateral neck. The hepatic GDF15 affected thyroid morphogenesis via a TSH-independent mechanism, affecting aggressive features of thyroid cancers.


Assuntos
Fator 15 de Diferenciação de Crescimento , Glândula Tireoide , Animais , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Humanos , Fígado/metabolismo , Camundongos , Camundongos Transgênicos , Glândula Tireoide/metabolismo , Tireotropina/metabolismo
13.
Cancer Commun (Lond) ; 42(8): 716-749, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35838183

RESUMO

BACKGROUND: Autophagy is elevated in metastatic tumors and is often associated with active epithelial-to-mesenchymal transition (EMT). However, the extent to which EMT is dependent on autophagy is largely unknown. This study aimed to identify the mechanisms by which autophagy facilitates EMT. METHODS: We employed a liquid chromatography-based metabolomic approach with kirsten rat sarcoma viral oncogene (KRAS) and liver kinase B1 (LKB1) gene co-mutated (KL) cells that represent an autophagy/EMT-coactivated invasive lung cancer subtype for the identification of metabolites linked to autophagy-driven EMT activation. Molecular mechanisms of autophagy-driven EMT activation were further investigated by quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting analysis, immunoprecipitation, immunofluorescence staining, and metabolite assays. The effects of chemical and genetic perturbations on autophagic flux were assessed by two orthogonal approaches: microtubule-associated protein 1A/1B-light chain 3 (LC3) turnover analysis by Western blotting and monomeric red fluorescent protein-green fluorescent protein (mRFP-GFP)-LC3 tandem fluorescent protein quenching assay. Transcription factor EB (TFEB) activity was measured by coordinated lysosomal expression and regulation (CLEAR) motif-driven luciferase reporter assay. Experimental metastasis (tail vein injection) mouse models were used to evaluate the impact of calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) or ATP citrate lyase (ACLY) inhibitors on lung metastasis using IVIS luciferase imaging system. RESULTS: We found that autophagy in KL cancer cells increased acetyl-coenzyme A (acetyl-CoA), which facilitated the acetylation and stabilization of the EMT-inducing transcription factor Snail. The autophagy/acetyl-CoA/acetyl-Snail axis was further validated in tumor tissues and in autophagy-activated pancreatic cancer cells. TFEB acetylation in KL cancer cells sustained pro-metastatic autophagy in a mammalian target of rapamycin complex 1 (mTORC1)-independent manner. Pharmacological inhibition of this axis via CAMKK2 inhibitors or ACLY inhibitors consistently reduced the metastatic capacity of KL cancer cells in vivo. CONCLUSIONS: This study demonstrates that autophagy-derived acetyl-CoA promotes Snail acetylation and thereby facilitates invasion and metastasis of KRAS-LKB1 co-mutated lung cancer cells and that inhibition of the autophagy/acetyl-CoA/acetyl-Snail axis using CAMKK2 or ACLY inhibitors could be a potential therapeutic strategy to suppress metastasis of KL lung cancer.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Fatores de Transcrição da Família Snail/metabolismo , Acetilcoenzima A/farmacologia , Acetilação , Animais , Autofagia/genética , Neoplasias Pulmonares/genética , Mamíferos , Camundongos , Processos Neoplásicos , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Transcrição/genética
14.
Front Immunol ; 13: 843520, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572519

RESUMO

A ketogenic diet (KD) is known to have beneficial health effects. Various types of KD interventions have been applied to manage metabolic syndrome based on modification of diet parameters such as duration of intervention, macronutrient components, and total calories. Nevertheless, the beneficial health impact of isocaloric KD is largely unknown, especially in healthy subjects. The present study investigated the acute effects of a 3-day isocaloric KD. In this non-randomized intervention study, we recruited 15 healthy volunteers aged 24-38 years (7 men and 8 women) and placed them on an isocaloric KD restricting intake of carbohydrates but not energy (75% fat, 20% protein, 5% carbohydrate) for 3 days. Biochemical profiles and laboratory measurements were performed. Peripheral blood monocular cells were cultured, and measured cell stimulated cytokines. After short-term isocaloric KD, subjects lost body weight and serum free fatty acid levels were increased. These results accompanied elevated serum ß-hydroxybutyrate (BHB) concentration and fibroblast growth factor 21 (FGF21) levels and improved insulin sensitivity. Regarding the direct effect of BHB on inflammasome activation, interleukin-1ß (IL-1ß) and tumor necrosis factor-α secretion in response to adenosine triphosphate or palmitate stimulation in human macrophages decreased significantly after isocaloric KD. In ex-vivo experiments with macrophages, both FGF21 and BHB further reduced IL-1ß secretion compared to either BHB or FGF21 alone. The inhibitory effect of FGF21 on IL-1ß secretion was blunted with bafilomycin treatment, which blocked autophagy flux. In conclusion, isocaloric KD for 3 days is a promising approach to improve metabolic and inflammatory status. Clinical Trial Registration: clinicaltrials.gov (NCT02964572).


Assuntos
Dieta Cetogênica , Inflamassomos , Ácido 3-Hidroxibutírico/farmacologia , Adulto , Feminino , Fatores de Crescimento de Fibroblastos , Humanos , Inflamassomos/metabolismo , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Adulto Jovem
15.
Autophagy ; 18(12): 3043-3045, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35468040

RESUMO

Although the role of pancreatic ß-cell macroautophagy/autophagy is well known, that of ß-cell mitophagy is unclear. We investigated the changes of lysosomal Ca2+ by mitochondrial or metabolic stress that can modulate TFEB activation and, additionally, the role of TFEB-induced mitophagy in ß-cell function. Mitochondrial or metabolic stress induces mitophagy, which is mediated by lysosomal Ca2+ release, increased cytosolic [Ca2+] and subsequent TFEB activation. Lysosomal Ca2+ release is replenished by ER→lysosome Ca2+ refilling through ER Ca2+ exit channels, which is important for the increase of cytosolic [Ca2+] and mitophagy by mitochondria stressors. High-fat diet (HFD) feeding augments pancreatic ß-cell mitophagy, probably as an adaptation to metabolic stress. HFD-induced increase ofß-cell mitophagy is reduced by tfeb KO, leading to increased ROS and decreased mitochondrial complex activity or oxygen consumption in tfeb-KO islets. In tfeb Δß-cell mice, HFD-induced glucose intolerance and ß-cell dysfunction are aggravated. Expression of mitophagy receptor genes including Optn or Calcoco2 is increased by mitochondrial or metabolic stressors in a TFEB-dependent manner, likely contributing to increased mitophagy. These results suggest that lysosomal Ca2+ release in conjunction with ER→lysosome Ca2+ refilling is important for TFEB activation and mitophagy induction, which contributes to pancreatic ß-cell adaptation to metabolic stress.


Assuntos
Cálcio , Mitofagia , Animais , Camundongos , Autofagia/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Cálcio/metabolismo , Lisossomos/metabolismo , Mitofagia/genética , Estresse Fisiológico
16.
Front Oncol ; 12: 832804, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35321438

RESUMO

Mice with hepatocyte-specific deletion of autophagy-related 7 (Atg7 ΔHep mice) develop hepatoma, suggesting that autophagy deficiency could be a factor in the initiation of tumorigenesis. We have shown that FGF21 is induced as a 'mitokine' when Atg7 is disrupted in insulin target tissues such as the liver, which could affect systemic metabolism through endocrine activity. Since FGF21 or other endocrine FGF such as FGF19 can affect tumor growth, we hypothesized that FGF21 produced by Atg7-knockout (KO) hepatocytes may affect the behavior of Atg7-KO hepatoma in an autocrine manner. We, thus, crossed Atg7 ΔHep mice with systemic Fgf21-KO (Fgf21 -/-) mice to generate Atg7 ΔHep Fgf21 -/- mice. The number and size of hepatoma of Atg7 ΔHep mice were significantly increased by additional Fgf21 KO. The proliferation of Atg7-KO hepatocyte was significantly increased by Fgf21 KO. pYAP1/YAP1 representing YAP1 degradation was significantly decreased in the liver of Atg7 ΔHep Fgf21 -/- mice compared to Atg7 ΔHep Fgf21 +/+ mice. Consistently, expression of YAP1/TAZ downstream genes was significantly increased in the liver of Atg7 ΔHep Fgf21 -/- mice compared to Atg7 ΔHep Fgf21 +/+ mice, which could explain the increased size of hepatoma in Atg7 ΔHep Fgf21 -/- mice. Accumulation of ROS and ROS-mediated DNA damage were increased in the liver of Atg7 ΔHep Fgf21 +/+ mice, which was further aggravated by additional Fgf21 KO probably due to the absence of positive effect of FGF21 on mitochondrial function, explaining the increased number of hepatoma in Atg7 ΔHep Fgf21 -/- mice compared to Atg7 ΔHep Fgf21 +/+ mice. These results show that FGF21 produced by autophagy-deficient hepatocytes could have autocrine or paracrine effects on the number and proliferation of autophagy-deficient hepatoma, suggesting that hormones or factors released from autophagy-deficient tumors can influence the behavior or prognosis of the tumor in addition to the effects on host metabolism.

17.
Nat Commun ; 13(1): 1300, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35288580

RESUMO

Although autophagy is critical for pancreatic ß-cell function, the role and mechanism of mitophagy in ß-cells are unclear. We studied the role of lysosomal Ca2+ in TFEB activation by mitochondrial or metabolic stress and that of TFEB-mediated mitophagy in ß-cell function. Mitochondrial or metabolic stress induced mitophagy through lysosomal Ca2+ release, increased cytosolic Ca2+ and TFEB activation. Lysosomal Ca2+ replenishment by ER- > lysosome Ca2+ refilling was essential for mitophagy. ß-cell-specific Tfeb knockout (TfebΔß-cell) abrogated high-fat diet (HFD)-induced mitophagy, accompanied by increased ROS and reduced mitochondrial cytochrome c oxidase activity or O2 consumption. TfebΔß-cell mice showed aggravation of HFD-induced glucose intolerance and impaired insulin release. Metabolic or mitochondrial stress induced TFEB-dependent expression of mitophagy receptors including Ndp52 and Optn, contributing to the increased mitophagy. These results suggest crucial roles of lysosomal Ca2+ release coupled with ER- > lysosome Ca2+ refilling and TFEB activation in mitophagy and maintenance of pancreatic ß-cell function during metabolic stress.


Assuntos
Lisossomos , Mitofagia , Animais , Autofagia/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Lisossomos/metabolismo , Camundongos , Mitocôndrias/metabolismo , Mitofagia/fisiologia , Estresse Fisiológico
18.
Front Cell Dev Biol ; 10: 811701, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237600

RESUMO

Autophagy is pivotal in the maintenance of organelle function and intracellular nutrient balance. Besides the role of autophagy in the homeostasis and physiology of the individual tissues and whole organism in vivo, dysregulated autophagy has been incriminated in the pathogenesis of a variety of diseases including metabolic diseases, neurodegenerative diseases, cardiovascular diseases, inflammatory or immunological disorders, cancer and aging. Search for autophagy modulators has been widely conducted to amend dysregulation of autophagy or pharmacologically modulate autophagy in those diseases. Current data support the view that autophagy modulation could be a new modality for treatment of metabolic syndrome associated with lipid overload, human-type diabetes characterized by deposition of islet amyloid or other diseases including neurodegenerative diseases, infection and cardiovascular diseases. While clinically available bona fide autophagy modulators have not been developed yet, it is expected that on-going investigation will lead to the development of authentic autophagy modulators that can be safely administered to patients in the near future and will open a new horizon for treatment of incurable or difficult diseases.

19.
Hepatology ; 75(6): 1523-1538, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34773257

RESUMO

BACKGROUND AND AIMS: Currently there is no Food and Drug Administration-approved drug to treat NAFLD and NASH, the rates of which are increasing worldwide. Although NAFLD/NASH are highly complex and heterogeneous conditions, most pharmacotherapy pipelines focus on a single mechanistic target. Considering the importance of the gut-liver axis in their pathogenesis, we investigated the therapeutic effect of a long-acting dual agonist of glucagon-like peptide (GLP)-1 and GLP-2 receptors in mice with NAFLD/NASH. APPROACH AND RESULTS: C57BL/6J mice were fed a choline-deficient high-fat diet/high fructose and sucrose solution. After 16 weeks, mice were randomly allocated to receive vehicle, GLP1-Fc, GLP2-Fc, or GLP1/2-Fc fusion (GLP1/2-Fc) subcutaneously every 2 days for 4 weeks. Body weight was monitored, insulin/glucose tolerance tests were performed, feces were collected, and microbiome profiles were analyzed. Immobilized cell systems were used to evaluate direct peptide effect. Immunohistochemistry, quantitative PCR, immunoblot analysis, tunnel assay, and biochemical assays were performed to assess drug effects on inflammation, hepatic fibrosis, cell death, and intestinal structures. The mice had well-developed NASH phenotypes. GLP1/2-Fc reduced body weight, glucose levels, hepatic triglyceride levels, and cellular apoptosis. It improved liver fibrosis, insulin sensitivity, and intestinal tight junctions, and increased microvillus height, crypt depth, and goblet cells of intestine compared with a vehicle group. Similar effects of GLP1/2-Fc were found in in vitro cell systems. GLP1/2-Fc also changed microbiome profiles. We applied fecal microbiota transplantation (FMT) gain further insight into the mechanism of GLP1/2-Fc-mediated protection. We confirmed that FMT exerted an additive effect on GLP1-Fc group, including the body weight change, liver weight, hepatic fat accumulation, inflammation, and hepatic fibrosis. CONCLUSIONS: A long-acting dual agonist of GLP-1 and GLP-2 receptors is a promising therapeutic strategy to treat NAFLD/NASH.


Assuntos
Microbiota , Hepatopatia Gordurosa não Alcoólica , Animais , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 2/metabolismo , Inflamação/metabolismo , Fígado/patologia , Cirrose Hepática/complicações , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/patologia
20.
Nat Metab ; 3(3): 410-427, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33758420

RESUMO

TFEB, a key regulator of lysosomal biogenesis and autophagy, is induced not only by nutritional deficiency but also by organelle stress. Here, we find that Tfeb and its downstream genes are upregulated together with lipofuscin accumulation in adipose tissue macrophages (ATMs) of obese mice or humans, suggestive of obesity-associated lysosomal dysfunction/stress in ATMs. Macrophage-specific TFEB-overexpressing mice display complete abrogation of diet-induced obesity, adipose tissue inflammation and insulin resistance, which is independent of autophagy, but dependent on TFEB-induced GDF15 expression. Palmitic acid induces Gdf15 expression through lysosomal Ca2+-mediated TFEB nuclear translocation in response to lysosomal stress. In contrast, mice fed a high-fat diet with macrophage-specific Tfeb deletion show aggravated adipose tissue inflammation and insulin resistance, accompanied by reduced GDF15 level. Finally, we observe activation of TFEB-GDF15 in ATMs of obese humans as a consequence of lysosomal stress. These findings highlight the importance of the TFEB-GDF15 axis as a lysosomal stress response in obesity or metabolic syndrome and as a promising therapeutic target for treatment of these conditions.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fator 15 de Diferenciação de Crescimento/metabolismo , Resistência à Insulina , Lisossomos/metabolismo , Obesidade/prevenção & controle , Estresse Fisiológico , Tecido Adiposo/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos , Obesidade/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...